GSI 3DVar-Based Ensemble–Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments
نویسندگان
چکیده
An ensemble Kalman filter–variational hybrid data assimilation system based on the gridpoint statistical interpolation (GSI) three-dimensional variational data assimilation (3DVar) system was developed. The performance of the system was investigated using the National Centers for Environmental Prediction (NCEP) Global Forecast System model. Experiments covered a 6-week Northern Hemisphere winter period. Both the control and ensemble forecasts were run at the same, reduced resolution.Operational conventional and satellite observations alongwith an 80-member ensemblewere used. Various configurations of the system including oneor two-way couplings, with zero or nonzeroweights on the static covariance, were intercompared and compared with the GSI 3DVar system. It was found that the hybrid system produced more skillful forecasts than the GSI 3DVar system. The inclusion of a static component in the background-error covariance and recentering the analysis ensemble around the variational analysis did not improve the forecast skill beyond the one-way coupled system with zero weights on the static covariance. The one-way coupled system with zero static covariances produced more skillful wind forecasts averaged over the globe than the EnKF at the 1–5-day lead times and more skillful temperature forecasts than the EnKF at the 5-day lead time. Sensitivity tests indicated that the differencemay be due to the use of the tangent linear normal mode constraint in the variational system. For the first outer loop, the hybrid system showed a slightly slower (faster) convergence rate at early (later) iterations than the GSI 3DVar system. For the second outer loop, the hybrid system showed a faster convergence.
منابع مشابه
An OSSE-based Evaluation of Hybrid Variational-Ensemble Data Assimilation for the NCEP GFS, Part I: System Description and 3D-Hybrid Results
An observing system simulation experiment (OSSE) has been carried out to evaluate the 1 impact of a hybrid ensemble-variational data assimilation algorithm for use with the National 2 Centers for Environmental Prediction (NCEP) global data assimilation system. An OSSE 3 provides a controlled framework for evaluating analysis and forecast errors since a truth is 4 known. In this case, the nature...
متن کاملA Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment
A hybrid ensemble transform Kalman filter–three-dimensional variational data assimilation (ETKF– 3DVAR) system for the Weather Research and Forecasting (WRF) Model is introduced. The system is based on the existing WRF 3DVAR. Unlike WRF 3DVAR, which utilizes a simple, static covariance model to estimate the forecast-error statistics, the hybrid system combines ensemble covariances with the stat...
متن کاملInitialization of an ENSO Forecast System Using a Parallelized Ensemble Filter
As a first step toward coupled ocean–atmosphere data assimilation, a parallelized ensemble filter is implemented in a new stochastic hybrid coupled model. The model consists of a global version of the GFDL Modular Ocean Model Version 4 (MOM4), coupled to a statistical atmosphere based on a regression of National Centers for Environmental Prediction (NCEP) reanalysis surface wind stress, heat, a...
متن کاملAssimilation of Radar Radial Velocity Data with the WRF Hybrid Ensemble–3DVAR System for the Prediction of Hurricane Ike (2008)
An enhanced version of the hybrid ensemble–three-dimensional variational data assimilation (3DVAR) system for the Weather Research and Forecasting Model (WRF) is applied to the assimilation of radial velocity (Vr) data from two coastal Weather Surveillance Radar-1988 Doppler (WSR-88D) radars for the prediction of Hurricane Ike (2008) before and during its landfall. In this hybrid system, flow-d...
متن کاملIncorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework
Gridpoint statistical interpolation (GSI), a three-dimensional variational data assimilation method (3DVAR) has been widely used in operations and research in numerical weather prediction. The operational GSI uses a static background error covariance, which does not reflect the flow-dependent error statistics. Incorporating ensemble covariance in GSI provides a natural way to estimate the backg...
متن کامل